Главная Регистрация Статистика Контакты
   
 
Разделы
Автомобильные устройства Автоматические выключатели Стабилизаторы напряжения Источники питания Генераторы напряжения Маркировка компонентов Зарубежная схемотехника Радиотехника Вентиляция Оборудование Полезная информация Статьи и публикации
 
Последние материалы
Охранная gsm-сигнализация

Битумные станции

Бозон Хигса

Термопары

Ремонт посудомоечной машины

Реактор электрический

Электродвигатели на 220 и 380 вольт

 
Автоматические выключатели
Автоматический выключатель - УЗО.

Варианты применения УЗО в системах заземления.

Защита электропроводки в домах и квартирах.

Схемы распределительных щитов с использованием УЗО.

УЗО - Устройства защитного отключения.
 
Стабилизаторы напряжения
Выбор стабилизатора напряжения для коттеджа, дачи.

Принцип регулировки напряжения в стабилизаторах.

Стабилизатор напряжения Ресанта.

Регулировка напряжения в стабилизаторах.

Cхема питания ноутбука от автомобиля.
 
Зарубежная схемотехника
Регулируемые блоки питания и преобразователи.

Акустический выключатель.

Преобразователи напряжения.

Усилитель мощности на TDA2005.

Схема усилителя на 300 Ватт.
 
Полезная информация
Спутниковое телевидение и оборудование.

Подключение трехфазного двигателя в однофазную сеть.

Условные обозначения в электрических схемах (ГОСТ 7624-55).

Обозначения условные графические в схемах (ГОСТ 2.721-74). Часть I.

Обозначения условные графические в схемах (ГОСТ 2.721-74). Часть II.
 
 
» » УЗО - Устройства защитного отключения


Автоматические выключатели : УЗО - Устройства защитного отключения
28-06-2009, 00:08 просмотров: 17004

Принцип действия УЗО

Функционально УЗО можно определить как быстродействующий защитный выключатель, реагирующий на дифференциальный ток в проводниках, подводящих электроэнергию к защищаемой электроустановке. Основные функциональные блоки УЗО представлены на рисунке. Схема основных функциональных блоков УЗО

Схема основных функциональных блоков УЗО

1 - Трансформатор тока
2 - Пусковой орган
3 - Исполнительный механизм
4 - Цепь тестирования

Важнейшим функциональным блоком УЗО является дифференциальный трансформатор тока 1. В абсолютном большинстве УЗО, производимых и эксплуатируемых в настоящее время во всем мире, в качестве датчика дифференциального тока используется именно трансформатор тока. В литературе по вопросам конструирования и применения УЗО этот трансформатор иногда называют трансформатором тока нулевой последовательности - ТТНП, хотя понятие "нулевая последовательность" применимо только к трехфазным цепям и используется при расчетах несимметричных режимов многофазных цепей.

Пусковой орган (пороговый элемент) 2 выполняется, как правило, на чувствительных магнитоэлектрических реле прямого действия или электронных компонентах. Исполнительный механизм 3 включает в себя силовую контактную группу с механизмом привода.

В нормальном режиме, при отсутствии дифференциального тока - тока утечки, в силовой цепи по проводникам, проходящим сквозь окно магнитопровода трансформатора тока 1 протекает рабочий ток нагрузки. Проводники, проходящие сквозь окно магнитопровода, образуют встречно включенные первичные обмотки дифференциального трансформатора тока. Если обозначить ток, протекающий по направлению к нагрузке, как I1, а от нагрузки как I2, то можно записать равенство:

I1 = I2.

Равные токи во встречно включенных обмотках наводят в магнитном сердечнике трансформатора тока равные, но векторно встречно направленные магнитные потоки Ф1 и Ф2. Результирующий магнитный поток равен нулю, ток во вторичной обмотке дифференциального трансформатора также равен нулю.

Пусковой орган 2 находится в этом случае в состоянии покоя.
При прикосновении человека к открытым токопроводящим частям или к корпусу электроприемника, на который произошел пробой изоляции, по фазному проводнику через УЗО кроме тока нагрузки I1 протекает дополнительный ток - ток утечки (ID ), являющийся для трансформатора тока дифференциальным (разностным).

Неравенство токов в первичных обмотках (I1 + ID в фазном проводнике) и (I2, равный I1, в нейтральном проводнике) вызывает неравенство магнитных потоков и, как следствие, возникновение во вторичной обмотке трансформированного дифференциального тока. Если этот ток превышает значение уставки порогового элемента пускового органа 2, последний срабатывает и воздействует на исполнительный механизм 3.

Исполнительный механизм, обычно состоящий из пружинного привода, спускового механизма и группы силовых контактов, размыкает электрическую цепь. В результате защищаемая УЗО электроустановка обесточивается.

Для осуществления периодического контроля исправности (работоспособности) УЗО предусмотрена цепь тестирования 4. При нажатии кнопки "Тест" искусственно создается отключающий дифференциальный ток. Срабатывание УЗО означает, что оно в целом исправно.

Типы УЗО

По условиям функционирования УЗО подразделяются на следующие типы: АС, А, В, S, G.

  • УЗО типа АС - устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток, возникающий внезапно, либо медленно возрастающий.
  • УЗО типа А - устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток и пульсирующий постоянный дифференциальный ток, возникающие внезапно, либо медленно возрастающие.
  • УЗО типа В - устройство защитного отключения, реагирующее на переменный, постоянный и выпрямленный дифференциальные токи.
  • УЗО типа S - устройство защитного отключения, селективное (с выдержкой времени отключения).
  • УЗО типа G - то же, что и типа S, но с меньшей выдержкой времени.

Принципиальное значение при рассмотрении конструкции УЗО имеет разделение устройств по способу технической реализации на следующие два типа:

УЗО, функционально не зависящие от напряжения питания (электромеханические). Источником энергии, необходимой для функционирования - выполнения защитных функций, включая операцию отключения, является для устройства сам сигнал - дифференциальный ток, на который оно реагирует;

УЗО, функционально зависящие от напряжения питания (электронные). Их механизм для выполнения операции отключения нуждается в энергии, получаемой либо от контролируемой сети, либо от внешнего источника. Применение устройств, функционально зависящих от напряжения питания, более ограничено в силу их меньшей надежности, подверженности воздействию внешних факторов и др. Однако основной причиной меньшего распространения таких устройств является их неработоспособность при часто встречающейся и наиболее опасной по условиям вероятности электропоражения неисправности электроустановки, а именно - при обрыве нулевого проводника в цепи до УЗО по направлению к источнику питания. В этом случае "электронное" УЗО, не имея питания, не функционирует, а на электроустановку по фазному проводнику выносится опасный для жизни человека потенциал.

В конструкции "электронных" УЗО, производимых в США, Японии, Южной Корее и в некоторых европейских странах, как правило, заложена функция отключения от сети защищаемой электроустановки при исчезновении напряжения питания. Схема УЗО с функцией отключения сети

Схема УЗО с функцией отключения сети.

1 - Дифференциальный трансформатор тока
2 - Электронный усилитель
3 - Цепь теста
4 - Удерживающее реле
5 - Блок управления
Н - Нагрузка
Т - Кнопка "Тест"

Эта функция конструктивно реализуется с помощью электромагнитного реле, работающего в режиме самоудерживания. Силовые контакты реле находятся во включенном положении только при протекании тока по его обмотке (аналогично магнитному пускателю).

При исчезновении напряжения на вводных зажимах устройства якорь реле отпадает, при этом силовые контакты размыкаются, защищаемая электроустановка обесточивается. Подобная конструкция УЗО обеспечивает гарантированную защиту от поражения человека в электроустановке и в случае обрыва нулевого проводника.

В США применяются в основном УЗО, встроенные в розеточные блоки. На одном объекте, например, небольшой квартире устанавливается по 10-15 устройств. Розетки, не оборудованные УЗО, обязательно запитываются шлейфом от розеточных блоков с УЗО.

К сожалению, в нашей стране, в отличие от общепринятой в мировой практике концепции, целым рядом предприятий производятся электронные УЗО на базе типового автоматического выключателя.

Эти устройства функционируют следующим образом.
При возникновении дифференциального тока с модуля защитного отключения, содержащего дифференциальный трансформатор и электронный усилитель, на скомпонованный с модулем автоматический выключатель подается либо электрический сигнал (на модифицированную катушку токовой отсечки), либо с якоря промежуточного реле через поводок осуществляется механическое воздействие на механизм свободного расцепления выключателя. В результате автоматический выключатель срабатывает и отключает защищаемую цепь от сети. При отсутствии напряжения на входных зажимах такого устройства (например, при обрыве нулевого проводника до УЗО), во-первых, из-за отсутствия питания не функционирует электронный усилитель, во-вторых, отсутствует энергия, необходимая для срабатывания автоматического выключателя.

Таким образом, в случае обрыва нулевого проводника в питающей сети устройство неработоспособно и не защищает контролируемую цепь. При этом в данном аварийном режиме (при обрыве нулевого проводника) опасность поражения человека электрическим током усугубляется, так как по фазному проводнику через неразомкнутые контакты автоматического выключателя в электроустановку выносится потенциал. Пользователь, полагая, что в сети напряжения нет, теряет обычную бдительность по отношению к электрическому напряжению и часто предпринимает попытки устранить неисправность и восстановить электропитание - открывает электрический щит, проверяет контакты, - подвергая тем самым свою жизнь смертельной опасности.

В европейских странах - Германии, Австрии, Франции электротехнические нормы допускают применение УЗО только первого типа - не зависящих от напряжения питания. УЗО второго типа разрешено применять в цепях, защищаемых электромеханическими УЗО, только в качестве дополнительной защиты для конечных потребителей, например, для электроинструмента, нестационарных электроприемников и т.д. Электромеханические УЗО производят ведущие фирмы - Siemens, ABB, Schneider, ABL Sursum, Hager, Kopp, AEG, Baco, Legrand, Merlin-Gerin, Circutor и др.

К сожалению, на отечественном рынке появилось огромное количество самых разнообразных УЗО и устройств не установленного происхождения, имеющих часто привлекательный внешний вид, но по техническим параметрам не выдерживающих даже приемосдаточных испытаний.

Применение подобных устройств, учитывая особое назначение УЗО - защиту жизни и имущества человека, является совершенно недопустимым. Поэтому, при приобретении УЗО необходимо обратить особое внимание на наличие сопроводительной технической документации, в том числе обязательно двух сертификатов - сертификата соответствия и сертификата пожарной безопасности.

Существует класс приборов - УЗО со встроенной защитой от сверхтоков (RCBO), так называемые "комбинированные" УЗО. Схема устройства УЗО со встроенной защитой от сверх токов

Схема устройства УЗО со встроенной защитой от сверх токов.

1 - Катушка токовой отсечки
2 - Биметаллическая пластина
3 - Дифференциальный трансформатор тока
4 - Магнитоэлектрический расцепитель, реагирующий на дифференциальный ток
5 - Тестовый резистор
6 - Силовые контакты
Н - Нагрузка
Т - Кнопка "Тест"

Практически все фирмы-производители УЗО имеют в своей производственной программе УЗО со встроенной защитой от сверхтоков. Как правило, их доля в общем объеме выпускаемых устройств защитного отключения не превышает одного-двух процентов. Это объясняется довольно ограниченной областью их применения - незначительная, неизменяемая нагрузка, автономный электроприемник и т.п.

Показательным примером является освещение рекламных щитов, установленных на уличных павильонах остановок общественного транспорта, где питание двух-трех люминесцентных ламп осуществляется через комбинированное УЗО с номинальным рабочим током 6 А и номинальным отключающим дифференциальным током 30 мА.

Конструктивной особенностью УЗО со встроенной защитой от сверхтоков является то, что механизм размыкания силовых контактов запускается при воздействии на него любого из трех элементов - катушки с сердечником токовой отсечки, реагирующей на ток короткого замыкания, биметаллической пластины, реагирующей на токи перегрузки и магнитоэлектрического расцепителя, реагирующего на дифференциальный ток.

Применение УЗО со встроенной защитой от сверхтоков, целесообразно лишь в обоснованных случаях, например, для одиночных потребителей электроэнергии.



 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо зайти на сайт под своим именем.

Другие новости по теме:

  • Зарядное устройство для щелочных, NiCd, NiMN и Li-ion аккумуляторов
  • Схема электронного предохранителя
  • Схемы распределительных щитов с использованием УЗО
  • Варианты применения УЗО в системах заземления
  • Знакомство с УЗО


  • Комментарии (0)   Напечатать
     
    Информация
    Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
     
     
     
     
    Авторизация
    Логин:
    Пароль:
     
     
    Генераторы напряжения
    Миниэлектростанция. Вопросы и ответы.

    Обеспечение длительного времени бесперебойного электроснабжения.

    Портативные бензиновые и дизельные генераторы.

    Построение дистанционной системы подачи топлива для дизель-генераторной установки.

    Стационарный дизельный генератор.
     
    Источники питания
    Коэффициент мощности однофазного бестрансформаторного импульсного источника питания.

    Многомодульный источник бесперебойного питания. Схемы, решения.

    Отечественные однофазные ИБП. Характеристики.

    Схемотехника однофазных корректоров коэффициента мощности.

    Схемотехника и технические характеристики ИБП малой и средней мощности.

    Трехфазные ИБП: схемотехника и технические характеристики.

    Топологии источников бесперебойного питания переменного тока (ИБП).
     
    Маркировка компонентов
    Резисторы. Цветовая маркировка.

    Резисторы. Кодовая маркировка.

    Кодовая маркировка электролитических конденсаторов.

    Кодовая маркировка конденсаторов.

    Конденсаторы. Допуски и температурный коэффициент.

    Корпуса компонентов для поверхностного монтажа.

    Сквозная нумерация наиболее популярных корпусов SMD.

    Индуктивность. Цветовая и кодовая кодировка.

    Транзисторы. Цветовая и кодовая кодировка.
     
    Наш опрос
    Каких материалов не хватает на сайте?

    Техническая документация
    Электрические схемы
    Справочная информация
    Я нашел то, что искал
    Мне без разницы
     
    Статистика
     
    Вся информация находится в свободном доступе и размещена не для коммерческого использования.
    Copyright © 2009 - «Электропортал»